Block copolymer conjugated Au-coated Fe3O4 nanoparticles as vectors for enhancing colloidal stability and cellular uptake

نویسندگان

  • Junbo Li
  • Sheng Zou
  • Jiayu Gao
  • Ju Liang
  • Huiyun Zhou
  • Lijuan Liang
  • Wenlan Wu
چکیده

BACKGROUND Polymer surface-modified inorganic nanoparticles (NPs) provide a multifunctional platform for assisting gene delivery. Rational structure design for enhancing colloidal stability and cellular uptake is an important strategy in the development of safe and highly efficient gene vectors. RESULTS Heterogeneous Au-coated Fe3O4 (Fe3O4@Au) NPs capped by polyethylene glycol-b-poly1-(3-aminopropyl)-3-(2-methacryloyloxy propylimidazolium bromine) (PEG-b-PAMPImB-Fe3O4@Au) were prepared for DNA loading and magnetofection assays. The Au outer shell of the NPs is an effective platform for maintaining the superparamagnetism of Fe3O4 and for PEG-b-PAMPImB binding via Au-S covalent bonds. By forming an electrostatic complex with DNA at the inner PAMPImB shell, the magnetic nanoplexes offer steric protection from the outer corona PEG, thereby promoting high colloidal stability. Transfection efficiency assays in human esophageal cancer cells (EC109) show that the nanoplexes have high transfection efficiency at a short incubation time in the presence of an external magnetic field, due to increased cellular internalization via magnetic acceleration. Finally, after transfection with the magnetic nanoplexes EC109 cells acquire magnetic properties, thus allowing for selective separation of transfected cells. CONCLUSION Precisely engineered architectures based on neutral-cationic block copolymer-conjugated heterogeneous NPs provide a valuable strategy for improving the applicability and efficacy of synthesized vectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design, Optimization Process and Efficient Analysis for Preparation of Copolymer-Coated Superparamagnetic Nanoparticles

Magnetic nanoparticles (MNPs) are very important systems with potential use in drug delivery systems, ferrofluids, and effluent treatment. In many situations, such as in biomedical applications, it is necessary to cover inorganic magnetic particles with an organic material, such as polymers. A superparamagnetic nanocomposite Fe3O4/poly(maleic anhydride-co-acrylic acid) P(MAH-co-AA) with a core/...

متن کامل

Chitosan Functionalized Fe3O4@Au Core-Shell Nanomaterials for Targeted Drug Delivery

Chitosan functionalized Fe3O4-Au core shell nanoparticles have been prepared using a two-step wet chemical approach using NaBH4 as reducing agent for formation of Au in ethylene glycol. X-ray diffraction studies shows individual phases of Fe3O4 and Au in the as prepared samples with crystallite size of 5.9 and 11.4 nm respectively. The functionalization of the core-shell nanostructure with Chit...

متن کامل

The effective nuclear delivery of doxorubicin from dextran-coated gold nanoparticles larger than nuclear pores.

To date, gold nanoparticles (AuNPs) have been investigated for diverse bioapplications. Generally, AuNPs are engineered to possess surface coating with organic/inorganic shells to increase colloidal stability in biological solutions and to facilitate chemical conjugation. In the present study, we developed a strategy to prepare dextran-coated AuNPs with control over its size by simply boiling a...

متن کامل

Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles

Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was acco...

متن کامل

Amphiphilic block copolymer-stabilized gold nanoparticles for aerobic oxidation of alcohols in aqueous solution.

Stable Au nanoparticles in P123 aqueous solution using a simple method have been developed and the colloidal Au nanoparticles were successfully applied for the effective oxidation of various alcohols using molecular O2 as oxidant at 30 degrees C in aqueous solution.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2017